Reg. No.:											
-----------	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 20408

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2018.

Third Semester

Electronics and Communication Engineering

EC 6302 — DIGITAL ELECTRONICS

(Common to Mechatronics Engineering, Robotics and Automation Engineering)

(Regulations 2013)

(Also common to PTEC 6302 — Digital Electronics for B.E. (Part-time) Second Semester — Electronics and Communication Engineering — Regulations 2014)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What are the universal gates? Justify.
- 2. State De-Morgan's Theorem.
- 3. Write the characteristic equation of 4×1 Multiplexer.
- 4. State the differences between combinational and sequential circuits.
- 5. Draw the excitation table for D Flip Flop.
- 6. Draw the state diagram of 3 bit up counter.
- 7. Compare PAL, PLA and PROM.
- 8. Define setup time with timing diagram.
- 9. Mention the types of sequential circuits and give the difference between them.
- 10. Define Mealy machine with a state diagram.

PART B - (5 × 13 = 65 marks)

11. (a) Simplify $f(W, X, Y, Z) = \sum m(2, 6, 8, 9, 10, 11, 14, 15)$ using Quine – Mc Cluskey method of minimization.

Or

- (b) Draw and Explain NAND, NOT and NOR gate CMOS representation.
- 12. (a) Draw 4×1 multiplexer and 1×4 Demultiplexer using gates and explain its operation.

Or

- (b) Design a 2 bit magnitude comparator and draw its logic circuit.
- 13. (a) Explain the logic circuit, characteristic and excitation table of JK, SR and D flip flop.

Or

- (b) Design a 3 bit synchronous binary up-down binary using T flip flop..
- 14. (a) Design and implement a BCD to gray code converter using PAL.

Or

- (b) Write short notes on Static, Bipolar and MOSFET RAM cell.
- 15. (a) Elucidate the design procedure of synchronous sequential circuits.

Or

(b) Design a sequential circuit whose state tables are specified in the Table below using D flip-flops.

Present State	Next	State	Output			
Q ₀ Q ₁	x = 0	x = 1	x = 0	x = 1		
0.0	0 0	0 1	. 0	0 .		
0 1	0 0	10	0	0		
10	11	10	0	0		
11	0 0.	0 1	0	1		

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) (i) Design a circuit that has a 3-bit binary input and a single output (Z) specified as follows: (8)

Z = 0, when the input is less than 5_{10}

Z = 1, otherwise

(ii) Simplify the given logic circuit using Boolean Simplification. (7)

Or

(b) Design a synchronous sequential circuit whose state diagram is shown below. (15)

